
Unified Heterogeneous HPCC Hardware Management Framework

Yung-Chin Fang, Jeffrey Mayerson, Rizwan Ali, Monica Kashyap; Jenwei Hsieh; Tau Leng,

Victor Mashayekhi
Dell Inc.

{Yung-Chin_fang; Jeffrey_mayerson; Rizwan_ali; Monica_kashyap; Jenwei_hsieh; Tau_leng;
Victor_Mashayekhi}@dell.com

Abstract

The remote, hardware level management of
heterogeneous clusters (such as the remote power
cycling of a hung node) is a necessary task for a
computer center. This task requires knowledge across
multiple specifications, fabrics (hardware, firmware,
software, management) and implementations. For a
heterogeneous cluster environment, there is little in
common across hardware level management interface
implementations. In a heterogeneous HPCC, grid or
cyber-infrastructure environment, there is a need to
have a common hardware management interface
across unique architecture, platform, firmware,
software and management fabric implementations.
This paper presents the framework of a unified
interface across heterogeneous clusters to overcome
these differences. This paper also addresses certain
findings in the prototyping process.

1. Management specifications

The management specifications described in this
section are designed for the operational and
deployment phases of the cluster life cycle model [1].
The purpose of management specifications is to
enhance uptime and reduce total cost of ownership.
These specifications are designed to facilitate the
hardware, firmware and software implementations
used on a platform to perform local/remote monitoring
and management of the node level hardware health
condition, without interfering with the node’s
computing performance.

The frequently used HPC cluster management features
are primarily based on well defined management
specifications. For example: in order to remotely

deploy the operating system and cluster computing
software stack to a new cluster, system administrators
will often utilize the hardware level remote power
management specification implementation to remotely
power up the nodes in serial to facilitate pre-boot
execution environment (PXE) [2] or extensible
firmware interface (EFI) [3] level network boot. These
implementations are used to remote deploy the OS and
cluster computing software stack to the nodes across a
cluster. PXE is usually implemented in an IA32
platform’s basic input output system (BIOS) or in
network interface card ROM. EFI level network boot
is implemented at? In? network interface’s EFI level
driver. Remote power management is defined in
advanced configuration and power interface (ACPI)
[4], and ACPI is included in the Wired for
Management (WfM) [5] specification. Remote power
management is also addressed in the intelligent
platform management interface (IPMI) [6]
specification. Along with LM sensor management [7],
IPMI and WfM are the three most commonly
implemented specifications.

LM sensor management is a de facto standard from the
1990’s, designed to use an embedded management
processor, such as the LM81 [8], which utilized many
sensors; such as CPU temperature, voltage, and fan
RPM sensors, etc. to monitor and manage the node-
level hardware health condition. There are some
dedicated management buses which are independent to
host data/address/control bus. An administrator can
use an operating system level agent to query and
control a sensor’s reading via the LM processor. The
operating system level agent can pass sensor readings
to a centralized management console via a
management fabric, and this is usually referred to as
in-band management. There are two common views
on the definition of in-band management. The first

school of thought is that a management task can only
be performed with the presence of an operating
system, and the other definition is that management
traffic and the host operating system share the same
communication bandwidth. While these two
definitions are not mutually exclusive, they do
correspond to two equivalent definitions for out-of-
band management. The first is that a management task
can be done without the presence of an operating
system, and the second is that a management task will
not share communication bandwidth with a host
operating system.

The disadvantage for in-band management is: when a
node is hung, a system administrator can not judge if it
is a software issue, a platform/hardware issue or a
network related issue. An administrator loses
management access to the hung machine. Under this
implementation, there is no way to remote power cycle
a hung node. Under this limited framework, Advanced
Power Management (APM) [9] and Emergency
Management Protocol/Port (EMP) [10] specification
were introduced and implemented to overcome these
disadvantages. An OS level APM daemon is designed
for power management and it is BIOS based. If a
system BIOS does not support APM, then the APM
utility can not function as expected. Since APM is
BIOS based, an operating system has no knowledge
about what APM does. A wide variety of
implementations and functionality has created
inconsistent hardware environments for a system
administrator. EMP is designed to facilitate the use of
a system’s serial port as the second management
fabric, so the administrator can use this fabric to
remote power cycle a hung node if the platform’s
BIOS implements both the APM and EMP
specifications. An EMP implementation usually
supports BIOS level console redirection, and the
administrator can configure the operating system for
OS level console redirection. This provides remote
power cycle and console redirection features for an
operational phase system. APM/EMP provide a
limited feature set for the operational phase of a
cluster’s lifecycle, but features for the deployment
phase are not addressed, and features for the
operational phase can be further enhanced. With these
enhancements in mind, the Wired for Management
(WfM) specification was designed and has been
widely implemented.

WfM incorporates the following specifications:
Preboot eXecution Environment (PXE), Wake on LAN
(WOL), and Advanced Power Configuration Interface
(ACPI), along with interfaces to many management

protocols such as: Simple Network Management
Protocol (SNMP) [11], Common Interface Mode
(CIM) [12], DMI [13], etc. ACPI, WOL and PXE
specification implementations are typically helpful to
the cluster deployment phase. ACPI can be operated
with and without the presence of an operating system.
An ACPI implementation can be used to remote power
up a new cluster with no OS and also remote power
cycle a hung node. ACPI can also be used in
conjunction with an OS to provide Operating System
directed Power Management (OSPM) functions. With
OSPM, the OS determines when to provide power
management and the BIOS determines how to do it.
Some manufacturers have implemented the ACPI
specification on their platform, while other
manufacturers have chosen to implement advanced
power management (APM) specification or their own
proprietary remote power management
implementation.

The WOL specification complements the ACPI power
management feature. WOL enables cluster
management tools to send a WOL packet to a compute
node to wake it up. This requires that the cluster nodes
be implemented with either ACPI or APM
specification, plus, the network interface card must
support the WOL feature.

After a new node is powered up remotely, via ACPI or
WOL implementation, the next step is to deploy an
operating system to that node. PXE is designed for
remote boot-up and is usually implemented in
conjunction with a network chip and the system BIOS.
When a server boots up, it can execute the PXE, which
resides on system BIOS or network interface card
option ROM, and send out a Dynamic Host
Configuration Protocol (DHCP) [14] request to a
remote boot server asking for an IP address. Once the
IP address is received, the PXE routine can interact
with a remote boot server to dynamically retrieve the
requested boot image over the network. These items
make it possible to remotely install the operating
system and applications, and to remotely configure a
new cluster without the presence of a technician. Most
of the popular cluster computing packages, such as
Open Source Cluster Application Resources (OSCAR)
[17] by the Open Cluster Group and the ROCKS by
San Diego Supercomputer Center and others, facilitate
the PXE implementation as the main remote system
deployment mechanism building block. PXE
implementation does have a hardware dependency, so
a later extensible firmware interface (EFI) moved the
boot-up portion of PXE to EFI level instead of
firmware level. EFI network boot is usually

implemented on IA64 platforms (which have a
dependency on the Extensible firmware interface).

WfM also supports a wide range of management
specifications such as: DMI, CIM, SNMP, Boot
integrity service (BIS) [15], Network PC Guidelines,
Solution Exchange Standard (SES)/Service Incident
Exchange Standard (SIS) [16], System Management
BIOS (SMBIOS), Web-Based Enterprise Management
(WBEM), Windows Management Instrumentation
(WMI), and others. This provides operating system
level interoperability.

There is no standardized industry-wide HPC cluster
management specification. Current HPCC
management approaches are designed to integrate and
facilitate available implementations of these
specifications to perform cluster management. To
overcome this short coming, node level management
features could be integrated and automated via a
unified command line interface (CLI) implementation
and provide cluster/grid/cyberinfrastructure level
services and increase uptime.

2. Specifications Implementation

Standardized management specifications are defined
by groups of professionals from many parties. When
defining standards, there is usually some space for
vendors to interpret, so each vendor can have its own
implementation of a single standard. For example:
IPMI 1.5 defines a set of baseboard management
controller (BMC) level ASCII text command set for
remote management. In order to communicate with
the BMC level ASCII text command, a proxy based
CLI is needed for a remote management console. Each
vendor has interpreted the specification and
implemented a unique command set for their own
remote management console. So, even though the
IPMI standard defines a command set, the remote
proxy CLI for this command set will be different from
vendor to vendor. The variety of implementations has
caused heterogeneous cluster management
inconvenience. When a system administrator needs to
remote power cycle a hung node, the following items
must be known:

1) What is the brand? Different vendors implement
management of HW/FW/SW differently.

2) What is the architecture? Is it monolithic, blade,
IA32, or IA64? Usually different architectures
will lead to a different management
HW/FW/SW stack implementation.

3) What is the platform model? A single vendor
may have different implementations on different
models. For example: Model A may have in-
band manageability only, Model B may have a
proprietary out-of-band management
implementation, and Model C may have a
standardized out-of-band implementation.

4) What are the available management fabrics? In-
band, Serial-Over-LAN, Serial-Over-Telnet,
EMP via dedicated Ethernet, shared Ethernet, or
a direct serial connection?

5) What are the privilege requirements? Is root
access required for this feature, or can a general
user perform this command?

6) What is the available HW/FW/SW? A single
platform may have different HW/FW/SW
configurations. One configuration may support
a remote management controller, one
configuration may support an IPMI
implementation via X command line interface.
The same platform with a different version of
IPMI firmware may behave differently, and may
not support the same command set. An
administrator needs to figure out what the
current HW/FW/SW configuration is for the
platform.

7) What are the version requirements? In order to
remote power cycle a node, the centralized
management console may need to be equipped
with certain software modules. In many
instances, these modules may have runtime
environment dependency such as operating
system kernel version dependency, development
tool/runtime dependency, etc.

8) What are the available management fabrics and
corresponding command line interface? One
platform can be equipped with more than one
management fabric. For example:
• The platform has OS level in-band

manageability via in-band fabric
• The platform is equipped with a

proprietary IP addressable remote
management card via a dedicated
Ethernet port

• The platform is equipped with a serial
based proprietary remote management
controller via a serial port connection

• The platform is equipped with an IPMI
Serial Over LAN (SOL) via a dedicated
out-of-band Ethernet port

• The platform is equipped with EMP via a
direct serial connection

In many cases, one platform can have more
than one dedicated management fabric. Also,
an OS level hardware management CLI
usually has a kernel version dependency.

Different vendors interpret and implement
management specifications differently, and usually one
platform will be implemented with more than one
management specification. For example, one platform
can have full PXE, ACPI, EMP plus part of the IPMI
and WfM implementation. The chance of two models
having the same management specification
implementation is rare.

3. The need

To learn the management specifications and various
implementations from vendors for different platforms
is a very time consuming process and the
implementation will change along with age. Usually a
heterogeneous cluster will have more than one CLI.
Different platforms from the same vendor can be
equipped with different remote management CLIs.
Each CLI has its own command set. A large number
of management commands across generations of
clusters is also a barrier for efficient remote hardware
management. A unified interface to cross all
hardware, firmware, software, CLIs, specifications and
implementations is needed for heterogeneous cluster
management.

The design considerations for such a unified interface
should include: efficient scalability; expandability for
future CLIs and management components; a grouping
feature for group users, platforms and groups; a one-
to-many CLI mechanism; a single interface to auto
resolve runtime environment dependencies; and also a
single interface to cross all the available platform
hardware, management fabrics, firmware, software and
CLIs is desired.

4. Dependency analysis

Dependency analysis falls into two categories: (1)
management console and (2) managed node. For the
management console category: any hardware level
remote command line interface implementation will
have a dependency list, such as: platform architecture,
operating system type and kernel version, development
tool/environment, and runtime environment
dependencies. Platform architecture dependencies can
be IA32, IA64, blade and/or monolithic architecture
dependent. OS type and kernel version dependencies

usually are associated with development tools. An
example of development tool/environment
dependencies are database version, compiler version,
java version, etc. Runtime environment dependencies
usually indicate the settings needed for the runtime
environment. Different CLIs from different vendors
will have different requirements for these
dependencies.

For the managed node category: architecture
dependencies such as IA32, IA64, monolithic and
blade management architecture is the root cause for the
remote hardware management inconvenience, while
embedded management feature implementation is
another major dependency. Embedded management
feature implementations can include: management
processor type, performance and capability; number of
management buses implemented; dedicated
management bus (such as SM bus or I2C bus) clock
rate; usable NVRAM size; management processor
topology to each component; the management
processor firmware implementation; OS level
management agent implementation, etc.

5. Unified CLI framework

After understanding the specifications, the need, and
investigating the complexity of the layers of
dependencies, the design of a unified CLI becomes
feasible.

The first consideration for heterogeneous cluster
management is scalability. A backend database engine
can be used for efficient scalability. Information such
as user account, password and privilege; required and
existing node hardware, firmware and software
configuration; user groups; individual cluster; and/or
cluster of clusters are all recorded in the database.
The second consideration is to have a one-to-many
execution engine, so one command can be sent to one
or more heterogeneous nodes by using a single CLI
command.

In order to overcome the complicated hardware,
firmware and software configuration and dependency,
an automated installation mechanism is implemented.
This installation will extract known information from
the database and install all the needed components to
the centralized management console and remotely
update the management components of managed
nodes. This resolved the complicated dependencies.
After the unified interface is installed, the interface
will scan all the possible management fabrics to auto

discover existing management hardware, firmware and
software, then update the corresponding node
information in the database.

In order to make a unified CLI, all existing CLI
commands and sub-commands are entered into the
database. An intelligent parser is implemented. Thus
when a user enters a command, the parser will convert
the high level command to the exact corresponding
command based on the hardware, firmware and
software information stored in the database, then
submit the command to the managed node. A plug-in
mechanism is also implemented for the managed node
level command set expansion, to allow for future
platform and management specification compatibility.

A self-contained installer mechanism is also
implemented to resolve firmware and software
dependencies along with providing hardware level
capability information. The installer will check the
management console and managed node runtime
environments from the firmware version up to the OS
level management component versions and then
migrate the runtime environment to the latest known
“best fit” configuration.

When an administrator needs to remote power cycle a
hung node or pull hardware information such as CPU
temperature, memory error count, or hard drive health
status, the administrator only needs to submit a single
command to the unified interface and tell the unified
interface which nodes to execute the command on. At
this point, the unified interface will map the command
to the existing implemented CLI from vendors and
execute the appropriate command across the nodes as
directed by the administrator.

Most of the existing hardware management
components, such as IPMI BMC logon and OS level
hardware management agent logon both have strict
authentication requirements. The unified CLI also
implements a transparent auto authentication
mechanism and group account management, so the
system administrator can use a group account to
remote power cycle a cluster without knowing the
corresponding hardware and command set.

In order to help enhance the usability, a scenario based
on-line help is created and exact command examples
are included in the on-line help.

6. Intelligence

In the test phase, the authors found two areas which
could be further improved to enhance the framework:

1) Cluster level power management: when remote
powering up a large cluster, power failures can occur.

2) Command failover: when a command failed, the
administrator needs to submit another sub-command to
perform the same operation.

Cluster level power management. The remote power
up of a cluster can cause unexpected power failures,
such as the triggering of a circuit breaker, a blown
fuse, etc. due to the large power spike. In order to
prevent unexpected downtime caused by power up, the
unified CLI also implemented a segmented parallel
power up algorithm. When an administrator submits a
command to remotely power up a cluster, the unified
CLI will power up the first node on every rack at the
same time. After waiting for a period of time, the
unified CLI will power up next row of nodes. The
rack and node relationship can be associated in the
database grouping feature. Based on empirical
measurements, certain high end servers can generate a
200 ampere spike for approximately 20ms when
powering up, so the default parallel power up delay
time can be set to 25ms to prevent unexpected
downtime due to power spike. The node ampere and
spike duration can be definable in a dedicated database
to provide compatibility for future platforms.

Command failover. Certain platforms have more than
one management fabric, such as in-band, out-of-band,
direct serial port connection, etc. The implementation
expands the command mapping mechanism and creates
a chain of corresponding commands. When one native
command fails, the unified CLI will auto failover to
another command. For example: when an OS level in-
band command for power cycling fails, the unified CLI
will try to find the corresponding out-of-band
command, then submit the out-of-band command to
the node. If the out-of-band command fails, the unified
interface will try to use the direct serial connection and
use the EMP feature to reset the node. If all efforts
fail, then the unified interface will return an error
message to indicate which node failed a specific
command execution.

This design brings command line level automation; an
administrator only needs to issue one command and
the unified interface should have the knowledge and
intelligence to complete the mission.

The unified CLI can be used in scripts, in order to
make it more compatible with other software. The
unified CLI is designed with an XML output capability

so it can be integrated with Ganglia or other OS level
monitoring/management utilities.

7. Conclusion

This framework provides a unified CLI interface to
remove the heterogeneous cluster hardware
management inconvenience. It also provides: database
class scalability, grouping features, OS and
hardware/firmware level user account and password
management, a transparent authentication mechanism,
command line level parser, a one to many command
submission mechanism, a command mapping
mechanism, a runtime environment capability and
compatibility verification mechanism, output format
conversion, a command acknowledgement mechanism,
a parallel remote power up mechanism, and a
command failover mechanism.

The prototype has been developed on a heterogeneous
cluster environment, and the prototype successfully
proved the framework can enhance an administrator’s
performance and reduce the cost of ownership.

To make this framework to be more thorough, SNMP
services is planned for integration into the framework
to provide even higher level management coverage,
such as the remote management of Ethernet or other
interconnect switches, the setting of the management
controller IP, and the remote management of KVM
switches, etc.

10. References

[1] Fang, Yung-Chin; Mayerson, Jeffrey; Hsieh,

Jenwei; Mashayekhi, Victor; Scott, Stephen;
Naughton, Thomas, “The impact of industry
standard to cluster management,” High available
and performance computing workshop, Santa Fe,
NM Oct/2003.

[2] Preboot Execution Environment (PXE) Version 2.1

[3] EFI Specification 1.10 update

[4] Advanced Configuration and Power Interface

specification Revision 2.0c, August 25, 2003

[5] Wired for Management Baseline Version 2.0

[6] IPMI V1.5 Rev 1.1 Specification

[7] Management Hardware Design, Interface and

Layout Guidelines

[8] National Semiconductor, “LM81 Serial Interface

ACPI-Compatible Microprocessor System
Hardware Monitor”

[9] Advanced Power Management Specification V. 1.2

[10] Emergency Management Technical Committee

Requirements Working Draft: 25 March 2003

[11] SNMP Version 3

[12] CIM Schema v2.8

[13] DMI v2.0s Specification

[14] RFC 2131 Dynamic Host Configuration Protocol

March 1997

[15] Intel® Boot Integrity Services Application

Programming Interface Version 1.0

[16] DMTF DSP0132 Solution Exchange and Service

Incident Specification

[17] Thomas Naughton, Stephen L. Scott, et el., “The

Penguin in the Pail -- OSCAR Cluster Installation Tool,”
The 6th World MultiConference on Systemic, Cybernetics
and Informatics (SCI 2002), Invited Session of SCI'02,
Commodity, High Performance Cluster Computing
Technologies and Applications, Orlando, FL, USA, 2002.

	1. Management specifications
	2. Specifications Implementation
	3. The need
	4. Dependency analysis
	5. Unified CLI framework
	6. Intelligence
	7. Conclusion
	10. References
	[10] Emergency Management Technical Committee Requirements Working Draft: 25 March 2003

