Dynamic Load-Balancing Algorithm Porting
on MIMD Machines

Francisco J. Muniz

Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN,
C.P.941,30123-970 - Belo Horizonte - MG, Brazil

muniz@cdtn.br

Abstract. This paper describes the porting strategies and the imple-
mentation of a dynamic load-balancing mechanism over the PVM li-
brary. Such load-balancing mechanism, the Extended Gradient approach,
is found in the open literature. The implementation was done using the
'C’ programing language, running over Linux/X86 compute nodes. Some
results that validate the usefulness of the load-balancing system are pre-
sented. The conclusions are general and not restricted to any particular
architecture of distributed-memory MIMD (Multiple Instruction, Multi-
ple Data) machines.

1 Introduction

On mono-processing systems, to make decisions of where to place a process (to
be executed) is quite obvious. However, on a parallel machine such decision
has to be better elaborated. Mechanisms that distribute the processing demand
over a cluster are called load-balancing mechanisms. In particular, mechanisms
with abilities to start or to move processes at run-time are referred as dynamic
load-balancing mechanisms. A comprehensive survey on existing resources man-
agement approaches is found in a literature review [1]. The load-balancing mech-
anism implemented in this paper is dynamic, since it does the distribution of
new processes at run-time.

2 Dynamic Load-Balancing Policy

The main objective of this section is to introduce the dynamic load-balancing
mechanism whose porting is the major focus on this paper.

2.1 Gradient Model Mechanism

The Gradient Model (GM) mechanism [2] is a locally-distributed scheme with
a global placement or migration space. Periodic exchange of load-balancing in-
formation is restricted to a small and pre-specified subset of other nodes in the
cluster (also referred as valency of a node), therefore a potentially scalable mech-
anism. The processor status is determined by the local processor availability, i.e.

2 F.J. Muniz

a measure of the loading level of the processor, and the status of its neighbour
nodes - this status represents the logical distance (number of intermediate neigh-
bour nodes plus one) to the nearest idle node in the cluster. The local processor
availability is classified as lightly-loaded (idle) or heavily-loaded by comparing
each node’s current CPU ‘busyness’-level with a ‘two thresholds information pol-
icy’ [3] - these thresholds must be previously established. A suitable hysteresis
level must be also considered when establishing these thresholds to avoid that
a processor changes from the over-loaded state to lightly-loaded state and then
back again to over-loaded state too often. The node status information is propa-
gated, from lightly-loaded to over-loaded nodes, through a message interchanging
among neighbour nodes.

2.2 Gradient Model Drawbacks

Although the GM scheme is scalable, it has two serious drawbacks [4]: (1) Infor-
mation from idle (lightly-loaded) nodes propagates to over-loaded nodes through
intermediate ones. In the worst-case there is a distance of ‘d’ hops between possi-
ble source and destination processors, where d is the maximum distance between
any pair of nodes in the cluster. Since the system load changes dynamically, the
processor load status may be considerably out-of-date. (2) If there are only a few
lightly-loaded nodes in the cluster, more than one over-loaded source processor
may emit a task towards the same lightly-loaded processor. This overflow effect
has the potential to transform lightly-loaded processors into heavily over-loaded
ones.

2.3 Extended Gradient Algorithm

The Extended Gradient (EG) mechanism [5] overcomes the problems of out-of-
date information and overflow effect. Once a processing resource is required and
not locally available, the EG method interrogates the remote processor identified
by the GM scheme as lightly-loaded to confirm that it is still available and
reserves it to receive the new processing demand. Although the EG approach
requires communication from any one to all of the other nodes in the cluster
(nxn), in order to overcome the above problems, communication facilities are
used economically, i.e. reservation requests are allowed only to highly-probable
lightly-loaded processors (those previously identified by the GM scheme). Even
with this economical use of network communication facilities, it is still possible
that excessive network traffic could be generated under over-load conditions. To
reduce this occasional excessive network traffic, the introduction of a bound on
the number of attempts made to reserve an under-utilised node is proposed.
If no lightly-loaded processor can be found after these attempts, then the new
process is started locally as the overall system is clearly over-loaded and therefore
the probability of existence of an available node in the cluster at that time is
likely to be very small. The EG mechanism also has a global placement and a
local status information exchange space. The system resource availability can be
requested at arbitrary execution times in any node. A detailed description of the

Dynamic Load-Balancing Algorithm Porting 3

EG algorithm will be further carried out (Section 5), since it is the mechanism
being ported in this paper.

3 Hardware and Software Environment

The selected environment is composed of Linux/X86 compute nodes, programed
in the ‘C’ language [6] running over the Parallel Virtual Machine (PVM) li-
brary [7]. Fully connected facilities were achieved on the PCs cluster using a
Gigaswitch. Valency of two (each PC communicates with two others) was estab-
lished, therefore organised as a logical ring topology to allow exchange of the
EG mechanism load-balancing information.

4 Processor Availability Measurement

Decisions on the availability of the node were determined by the Linux uptime
command [8]; particularly, the field that represents the medium node demand
in the last minute was selected. The thresholds information policy, mentioned
in Section 2.1, is then applied; by comparing the proper field of the uptime
command against the thresholds, adequately set, the local node availability is
then classified as lightly-loaded or heavily-loaded.

5 Porting Strategies of the EG Mechanism

A schematic representation of the dynamic load-balancing mechanism is shown
in Figure 1. The EG approach is composed of three modules: gm, eg_in and
eg-an. These three processes are loaded over all nodes of the PVM cluster. The
gm implements the GM mechanism previously describe (Section 2.1). The eg_in
module establishes the interface between the user (application), which is repre-
sented by a pvm_spawn function call of the PVM library, and the EG mechanism.
Once that the eg_in module has been activated by the application, if there is no
local processing resource available for the local processing demand, it interro-
gates the eg_an module on a remote node (indicated by the gm mechanism) to
confirm that it is still available, in order to overcome the out-of-date informa-
tion problem (as previously mentioned in Section 2.2). The overflow effect is
also avoided by the eg_an module, i.e. an eg_an module issuing a resource com-
mitment (an idle declaration) goes into a state of no answer; this prevents any
possibility of overflow. The target process remains in this state for a pre-specified
timeout, tailored to ensure that the committed transaction is completed before
any further commitment. Both the GM scheme and the EG mechanism provide,
at most, availability of one resource in each node at any given time. On the other
hand, simultaneous user demand for resources can be generated (asynchronous
events). To avoid collisions, the node select operation must be surrounded by a
semaphore primitive, represented by objects in rectangular forms (see Figure 1).
Two semaphores are represented: one in which the eg_in module is 'put to sleep’,

4 F.J. Muniz

if there is no demand for computational resources, and the other where appli-
cations should wait for resources. Simplified versions of these three modules in
a C-like pseudo-code language are shown in Appendix A. It was also necessary
to develop two other modules: one that initialises the semaphores and makes
available shared memory facilities between application and the eg_in module,
and another module which starts all these modules into all nodes of the PVM
cluster.

6 EG Mechanism Application Programer Interface

The PVM library offers two options of process distribution through a simple
procedure call to the pvm_spawn function: (1) it could be established (by the
programer) where a process should be initialised, or (2) if an empty string is
passed as the node name, a Cyclic Allocation (CA) load-balancing policy is
used. In addition to its original features, the pvm_spawn function was custom-
designed to support the EG mechanism: if a particular machine name (in the
case egm), which was pre-established in a good agreement, is indicated by the
user as the machine where the new process sould be started, the spawn primitive
inquiries the EG policy and the process is initialised in the node pointed by the
EG approach as lightly-loaded. Therefore, the facility made available by the
EG mechanism is added to the pvm_spawn function. This modified spawning
mechanism enables dynamic verification of processing availability in the cluster.

7 Performance Investigations of the EG Mechanism

For evaluation purposes, it is required a considerably larger number of processes
(n) than nodes (m) in the cluster (= > 1), an over decomposition approach,
so that the dynamic load-balancing mechanism could effectively manage the
system processing capacity. The scheme used was to execute several times a same
benchmark process, since it is a relatively straightforward method of spawning a
large number of processes. These benchmark investigations were achieved with
the number of processes value obtained as shown in Equation 1, therefore for
each benchmark experiment, n processes were spawned:

n=kxm?, (1)

where k is depending on the number of nodes. Three benchmark approaches
were selected to investigate the experimental performance of the EG mecha-
nism. Two of them, i.e. Hanoi and Queens codes, were downloaded from the
‘BENCHWEB’ web site [9]. The third benchmark code, also a real application,
was chosen from the field of computer graphics (Ray-tracing) [10]. A detailed
description of each one of these codes is outside the scope of this paper, however
they are well-known algorithms. To obtain unbalanced processing demand, the
spawned benchmark processes run the same code different number of times, for
example, Hanoi benchmark process numbers 0, 1, 2 and 3 runs 2, 3, 4 and 2

Dynamic Load-Balancing Algorithm Porting 5

application< - - =EG mechanism

Fig. 1. Graphic representation of the ported EG mechanism

Objects marked with p represent processes: gm is the GM mechanism; eg_in and eg_an
modules are extensions of the GM approach; others are application processes. Contin-
uous lines, marked with cc, represent communication channels; in particular, objects
in dotted line, marked with cc, represent communication facilities between processes
in distinct nodes. Objects in rectangular forms represent the semaphore primitives.
It is also represented, in dashed line, the interface between application and machine
facilities (EG mechanism part of the operating system).

times the Hanoi code respectively and so on, in cycles (see Table 1). In order to
start n processes in a cluster, their codes had to be adequately harnessed into the
PVM environment, in a way that the EG facilities could be used. A simplified
version of the ‘Towers of Hanoi Puzzle’ code starting mechanism, written in a
C-like pseudo-code language, is shown in Appendix B. The implementations for
the other codes are not presented in this paper, however their implementations
are similar to the one showed. For each benchmark code, two investigations were
done: (1) The execution times were measured and compared to the execution
time of a CA load-balancing policy (that one from PVM - see Section 6): the per-
centage of improvement was then derived from these times (see Table 2). (2) The
CPU-processing degradation, due to the EG mechanism, was also evaluated: se-
quential versions of the three benchmark processes were executed twice in one
of the nodes of the cluster (making no use of the load-balancing mechanism),
however, one of the benchmark executions had the EG mechanism running as
a background process. The overall execution times were also compared (see Ta-
ble 3).

6 F.J. Muniz

Table 1. Unbalanced processing demand

process number (pn) 01234..
Hanoi (pn%3 + 2) 23423 ...
Queens (2 x (pn%3+1)) 24624 ...
Ray-tracing (pn%3+2) 23423 ...

Number of times the same code runs in each process is a function of the process number.
In total, Hanoi (running over sets of 16 up to 30 disks) and Ray-tracing (running over
13 scenes) applications execute the same code 216 times (3x72); Queens (15 queens
on a 15x15 board) execute 288 times.

Table 2. Percentage of improvement

execution time EG/CA % of

(in seconds) improvement
Hanoi 2034/2253 10
Queens 1911/2582 16
Ray-tracing 1798/1787 -1
Percentage of improvement derived from the total execution times (1 — £5). Experi-

ments were conducted using 6 nodes and 72 processes.

8 Related Research

In particular, two related research investigations are mentioned. At first, a re-
search investigation is presented in which the design and the implementation
of another extension to the load-balancing GM mechanism were made [11]. In
such implementation, to overcome the problems of out-of-date information and
overflow effect of the GM scheme, a ticket propagation policy is used. These
tickets flow from consumer to producer processors. The ticket policy works in
such a way that an over-loaded processor is only allowed to issue a process to a
consumer processor if such producer has received a ticket. Another research to
be mentioned [12], contrarily to the first one, does not introduce any new bal-
ancing approach, neither a modification to an existent policy, however it claims
to have made available a library that makes possible prototype evaluations of
load-balancing mechanisms.

Table 3. CPU-processing degradation

without EG with EG

Hanoi 186 187
Queens 278 278
Ray-tracing 149 149

Numbers in second.

Dynamic Load-Balancing Algorithm Porting 7

9 Discussions and Further Works

Table 2 shows that a substantial machine performance improvement (execution
time reduction) was achieved for Hanoi (of 10%) and Queens (of 16%) real ap-
plications for the experiments whose processes average granularity ranges from
values of one and half minute (under the condition described previously). The ob-
served small performance degradation (of 1%) for Ray-tracing experiment when
using the EG mechanism suggests that, in this case, the CA load-balancing pol-
icy is marginally better than the EG scheme. From the Table 3 can be inferred
that CPU-processing degradation due to the EG mechanism is small than 1%
for the workload model established in the experiments. Possible further works
should be mentioned: (1) utilisation of prototype evaluation tools (similar to the
one presented in Section 8) in order to have better evaluation of the EG mech-
anism; (2) implementation of additional extensions to the EG load-balancing
mechanism.

10 Conclusions

It is worthwhile mentioning that the algorithm implemented: (1) is a decen-
tralised (a locally-distributed) mechanism, therefore a scalable method; (2) has
global placement space; yet, (3) can be easily required by application programer.
This paper therefore contains the porting of a dynamic load-balancing mech-
anism on a distributed-memory MIMD machine. Experiments were conducted
and results were presented to make evident that a system-level user-independent
dynamic load-balancing mechanism is feasible, practical and can significantly
improve performance.

11 Acknowledgements

I am grateful to the whole CENAPAD-MG/CO (‘Centro Nacional de Processa-
mento de Alto Desempenho para Minas Gerais e o Centro-Oeste’) group, who
made computing facilities available for the benchmark experiments and to the
FAPEMIG (‘Fundagao de Amparo a Pesquisa do Estado de Minas Gerais’) foun-
dation for providing financial resources to support my paper presentation. I wish
to mention John E. Stone for providing me the Ray-tracing code. I want also to
mention the colleagues Carlos, Orozimbo and Salvador for their suggestions and
comments during the development of this research.

References

1. D. G. Feitelson. Job scheduling in multiprogrammed parallel systems. Technical
report, IBM T. J. Watson Research Center, August 1997. (IBM RC 19790 (87657),
October 1994, Second Revision, August 1997, 175 pages).

2. F. C. H. Lin and M. R. Keller. Gradient model: a demand-driven load balancing
scheme. In IEEE Conf. on Distributed Systems, pages 329-336, 1986.

8

3.

10.

11.

12.

F.J. Muniz

K. G. Shin and Yi-Chieh Chang. Load sharing in distributed real-time systems
with broadcast of state changes, 1988. TR.88-006, Int. Computer Science Institute,
1941 Center Street, Suite 600, Berkeley, CA94704, 48 pages.

. S. Nishimura and T. L. Kunii. A decentralized dynamic scheduling scheme for

transputers networks. In T. L. Kunii and D. May, editors, Proc. of the 3¢ Trans-
puter/occam Int. Conf., pages 181-194, Tokyo, Japan, May 1990.

. F.J. Muniz and E. J. Zaluska. Parallel load-balancing: An extension to the gradient

model. Parallel Computing, 21(2):287-301, February 1995.

. Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice-Hall International, 1988. 2"¢ Edition, ANSI, INB 0-13-110362-8 (paper),
0-13-110370-9 (hard).

. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM 3.0 User’s guide and reference manual. Technical Report ORNL/TM-12187,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, February 1994.

. Larry Greenfield and Michael K. Johnson. UNIX uptime comand, January 1993.

fie@gauss.rutgers.edu and sonm@sunsite.unc.edu, respectively.

. BENCHWEB - High Performance Computers, 2003. http://www.netlib.-

org/benchweb/hpc.htm - aburto@nosc.mil.

John E. Stone. Tachyon (tm) parallel/multiprocessor ray tracing software, 2001.
johns@megapixel.com; j.stone@acm.org; johns@ks.uiuc.edu.

Liu Feixong, Thomas Peikenkamp, and Werner Damm. An extended gradient
model for NUMA multiprocessor systems. In Algorithms, Concurrency and Knowl-
edge, volume 1023, pages 210-224, Thailand, December 1995. (Asian Computing
Science of Lecture Notes in Computer Science, Asian Computing Science Confer-
ence, Springer).

K. J. Barker, N. P. Chrisochoides, and B. Holinka. Dynamic load balancing for
message passing asynchronous adaptive applications. In International Conference
on Supercomputing, Williamsburg, Va USA, 2002. (College of William and Mary,
Dept. of Computer Science, 10 pages).

A Extended Gradient Mechanism

A.1 gm Module

while (1) {

sleep(tick);

local_st = determine_local_load();
// calculate the node status

st = node_st(local_st, 1_r_st);

// pack the status to be sent
pvm_pkint (&st, 1, 1);

// send status to neighbours and to
// other processes of EG mechanism
pvm_send(l_r_neighbour, ...);
pvm_send(gm_eg_an, gm_eg_in, ...);
// receive status from neighbours
1l r_st = pvm_nrecv(l_r_neighbour, ...);

Dynamic Load-Balancing Algorithm Porting

A.2 eg_in Module

while (1) {
// Do a semaphore P-operation
semop(idl, P_operations, 1);
// verify, with gm, the idle node
pvm_nrecv(tids_gm, gm_eg_in_type);
pvm_upkfloat(&idle_h.load, 1, 1);
pvm_upkint (&idle_h.tid, 1, 1);
pvm_upkstr(idle_h.name) ;
strcpy(sbuf .mtext, &idle_h.name);
if ((idle_h.load == 0.0) &%
(mytid !'= tids[2]1[idle_il)) {
pvi_initsend (PvmDataDefault) ;
pvm_pkint (&mytid, 1, 1);
pvm_send (tids[1] [idle_i], eg_in_an_type);
pvm_recv(tids[1] [idle_i], eg_in_an_type);
pvm_upkfloat (&idle_h.load, 1, 1);
pvm_upkint (&idle_h.tid, 1, 1);
pvm_upkstr(idle_h.name);
if ((idle_h.load < th_high) &&
(idle_h.how_far <= nhost/2))
strcpy (sbuf .mtext, &idle_h.name);

}
// The message will be sent
msgsnd (msqid, &sbuf, ...);

// Do a semaphore V-operation
semop(id2, V_operations, 1);

A.3 eg_an Module

while (1) {
pvm_recv(-1, eg_in_an_type);
pvm_upkint (¥tid_inquiry, 1, 1);
pvm_nrecv(tids_gm, gm_eg_an_type);
pvm_upkfloat(&idle_h.load, 1, 1);
pvm_upkint (&idle_h.tid, 1, 1);
pvm_upkstr(idle_h.name) ;
pvm_initsend (PvmDataDefault) ;
pvm_pkfloat(&idle_h.load, 1, 1);
pvm_pkint(&idle_h.tid, 1, 1);
pvm_pkstr (idle_h.name);
pvm_send(tid_inquiry, eg_in_an_type);

10 F.J. Muniz

B Hanoi Benchmark Implementation

B.1 Master_Hanoi Module

#define nprocess ...

int main() {
int tids[2]; // tasks ids
master = pvm_parent();

if (master == PvmParentNotSet)
ntasks = nprocess;
else {

// receive message from the master
pvmn_recv(master, 0);
pvm_upkint (&ntasks, 1, 1);
}
if (ntasks > 0) {
// start up master Hanoi task
pvm_spawn(m_h, (char**)0, 0, "", 1, &tids[0]);
ntasks—-;
pvmn_initsend (PvmDataDefault) ;
pvm_pkint (&ntasks, 1, 1);
// send message to the new master
pvmn_send(tids[0], 0);
// start up slave Hanoi task
pvm_spawn(s_h, (char**)0, 1, "egm", 1, &tids[1]);
// send message to the new slave
pvm_send (tids[1], 1);

B.2 Slave_Hanoi Module

int main() {

pvm_recv(master, 1);

pvm_upkint (&ntasks, 1, 1);

loop = (ntasks % 3)+n;

system("date >> out");

for (i=0; i<loop; i++)

system("hanoi >> out"); // execute hanoi code

system("date >> out");

