
Linux Clusters Institute:
Scheduling with PBSPro

Ben Matthews, Software Engineer, NCAR



What does a batch scheduler do?

• Large scale, high-performance Tetris!
• Divide up a shared resource “fairly”

• “fair” may depend on politics/business logic
• Jobs should never “starve”

• Prevent users from stepping on each other
• Ensure system is utilized as much as possible
• Record statistics/track usage
• Assist middleware [MPI] with multi-node job launch

May 2017 2



PBSPro

• Developed at NASA Ames (Mountainview CA/Moffett Airforce Base)
• Acquired by Altair Engineering in the early 00’s
• Dual commercial/Open (Affero GPL v3)
• Support for various UNIX and Windows (mostly Linux + Windows)
• Various forks have been developed over the years

• TORQUE (Adaptive Computing – Commercial)
• OpenPBS (Open,ish)

• Reasonably Performant and Scalable

May 2017 3



PBSPro: Features

• Rich “hook” infrastructure for customization
• Fairshare
• Backfill
• Compatibility with a wide variety of MPI implementations
• Well understood (if not well documented) accounting log 
• Optional analysis components (commercial add-on only)

May 2017 4



PBSPro: Basic Components

• Server
• Runs on one or two, typically dedicated, servers
• Mediates between other components and maintains the queues

• Scheduler
• Takes a list of jobs from the server, tells the server which to run

• MoM
• Runs on each compute node, starts and supervises user code. Optional job-setup on 

the compute node. 
• Com

• Facilitates communication between components (only needs configuration at scale)

May 2017 5



Hardware Requirements

• For failover
• Two servers
• Shared filesystem (must support POSIX locking, but NFS ok)

• Server software is not well threaded yet: prefer higher clock frequency over 
many cores

• Database performance matters (SSD would be nice)
• Queues are stored in RAM, so memory usage scales with queue length. 

More RAM = better

May 2017 6



System Software Setup

• One user account for PBS to run under (typically “pbsdata”)
• UID<>username mapping should be consistent across the cluster
• Optionally, MUNGE can be used to authenticate the cluster
• ssh (or rsh), allowing passwordless connections between cluster nodes (use 

ssh keys or host trust) strongly recommended
• scp or rcp (or similar) must work (passwordless) between submit hosts and 

cluster nodes (for file staging)
• shared filesystem on compute nodes is not required, but is strongly 

recommended

May 2017 7



Installation

• RPMs provided to commercial customers for SLES and RHEL
• Can also build from source (and optionally produce RPMs)
• Four install types:

• Server
• Execution Host
• “commands only” (head-node)
• Everything (direct install from source)

• RPMs are relocatable (see the documentation for details)

May 2017 8



Installation: pbs.conf

• Present on all nodes
• Specifies which components to start and where the servers are
• Used to generate the initial configuration

May 2017 9



May 2017 10

/etc/pbs.conf
PBS_EXEC=/opt/pbs
PBS_HOME=/gpfs/pbs
PBS_START_SERVER=0
PBS_START_MOM=0
PBS_START_SCHED=0
PBS_START_COMM=0
PBS_SERVER=laadmin1.ib0.laramie.ucar.edu
PBS_PRIMARY=laadmin1.ib0.laramie.ucar.edu
PBS_SECONDARY=laadmin2.ib0.laramie.ucar.edu
PBS_SCP=/usr/bin/scp
PBS_RSHCOMMAND=ssh
PBS_CORE_LIMIT=unlimited
PBS_MAIL_HOST_NAME="ucar.edu”
PBS_AUTH_METHOD=MUNGE



Other places to look for configuration

• $PBS_HOME/{sched,server}_priv/{sched,server}_config

• “qmgr”
• Per-component configuration typically generated during the first startup

May 2017 11



Starting PBS

• systemctl start pbs #>= version 14, systemd systems
• /etc/init.d/pbs start #<=version 13, other init types
• Must be done on the server node(s) and all execution nodes 

May 2017 12



PBSPro: Commands

• qmgr
• Configuration

• qsub
• Submit Jobs

• qstat
• View Status of Jobs/Queues/Servers

• qrls/qhold
• Hold/Release Jobs

• pbs_rsub/pbs_rstat/pbs_rdel
• Manipulate Reservations

May 2017 13



PBS Objects

• Queues – collect jobs
• Nodes – run jobs
• Resources – generic properties

May 2017 14



Queues

• Two types:
• Execution
• Routing

• Routing queues accumulate jobs and pass them on to execution queues 
based on resource requests

• Execution queues store jobs and dispatch them to nodes
• May be fixed length or unrestricted (up to the amount of memory on your 

PBS server)
• May impose various restrictions/access controls

May 2017 15



Manipulating Queues

• qmgr -c ‘create queue new_queue’ #create a queue
• qmgr -c ‘set queue new_queue your_resource = foo’ #set a resource
• qmgr -c ‘set queue new_queue started=true’ #run jobs
• qmgr -c ‘set queue new_queue enabled=true’ #accept new jobs
• qmgr -c ‘print queue @default’ #list queues

May 2017 16



Resources

• Used to control the flow of jobs through PBS
• Typically used much less extensively by non-PBS schedulers (SLURM)

• Can be requested by the user, a hook, or required by a queue
• Static (set by an admin) or Dynamic (collected by the server/MoM)

May 2017 17



Resources

• Things your job needs
• Could be strings, numbers, etc
• Can be a thing that a specific node or queue provides
• Could be provided by something external (like a license server) but tracked 

by the scheduler
• Could be a simple property of a job

May 2017 18



Adding Custom Resources

• Make an entry in $PBS_HOME/server_priv/resourcedef
• If you are going to schedule based on your resource, add it to the 

“resources” list in $PBS_HOME/sched_priv/sched_config
• Attach the resource to nodes/queues/etc in qmgr

May 2017 19



Nodes

• Physical Hardware to run on (where MoM runs)
• Can be subdivided into vnodes which can be independently scheduled
• Can be assigned resources that can then be used to control which jobs will 

run
• Can be assigned dynamic resources, which are periodically measured by user 

provided or built-in scripts (load average, memory usage, etc). 

May 2017 20



Nodes

• May be in various states – see the output of “pbsnodes –a”
• Common States:

• offline – node is broken or marked down by an administrator
• job-exclusive – node is completely allocated to a job
• free – node is available for use
• down – Server and MoM aren’t communicating
• resv-exclusive – node is completely reserved

• Nodes can be in multiple states, for example, reserved and running a job

May 2017 21



Built-in Node resources

• Memory
• CPUs
• Free Disk
• Load Average
• Hostname
• OS
• Vnode
• System specific details (Cray, etc)

May 2017 22



Manipulating Nodes

• qmgr -c ‘create node node001’ #create a new node
• qmgr -c ‘print node @default’ #list nodes
• pbsnodes -o -c “this node is broken” node001 #offline node001
• pbsnodes -r node001 #online node001
• pbsnodes -a –F dsv #list nodes, parseable

May 2017 23



ACLs and Security

• Currently apply to user-id or a user’s primary group
• Can be used to restrict who may run how many jobs in which queue
• Can be supplemented with user-supplied python-scripts for additional 

flexibility (“hooks”)
• Configured as queue properties via qmgr
• Kernel provided user information is trusted, however MUNGE can be used to 

provide some level of authentication
• Users can be granted limited administrative privileges (killing other user’s 

jobs, running qmgr, etc)

May 2017 24



Hooks

• Short python scripts that are run at various points in the scheduling process
• Can be used to implement additional business logic or functionality 
• Need to be fast and robust

• Run by the Server or MoM and can therefore break the Server or MoM

• Newish feature with some rough edges but very flexible
• Avoid them if you can

• Configured via qmgr

May 2017 25



Components of a Job

• Resources you need? -l select=1:ncpus=1:mpiprocs=1
• For how long? -l walltime=1:00:00
• Where? -l place=scatter
• Which Queue? -q workq
• Where to put the output? -o stdout.log –e stderr.log

• See the qsub manpage for other options

May 2017 26



Placement
• Placement statement is three colon delimited (optional) clauses:

• -l place=arrangement:sharing:grouping
• Arrangement determines where the resources are allocated

• free: use any free vnodes
• pack: try to use vnodes from one (or as few as possible) hosts
• scatter: one chunk per host
• vscatter: one chunk per vnode

• Sharing
• excl: vnodes aren’t shared (but hosts might be)
• exclhost: hosts aren’t shared
• group= group by some resource

May 2017 27



Select

• Request a number of “chunks” containing some resources 
• Chunks are plus delimited
• Resources are colon separated
• First part of a chunk is the number of copies
• qsub -l select=2:ncpus=4:mem=1gb+1:ncpus=2:mem=5gb

• Give me 2 vnodes, with 4 cpus and 1gb of ram
• Also 1 vnode with 2 cpus and 5gb of ram

• Can be quite complex – see the documentation for details

May 2017 28



Sample Job

May 2017 29

#!/bin/bash
#PBS -l walltime=1:00
#PBS -lselect=2:ncpus=1:mpiprocs=2
#PBS -A SSSG0001
#PBS -N test_job
#PBS -q share

cd PBS_O_WORKDIR
mpirun ./a.out



Sample Job - Running

May 2017 30

chmod +x job_script.sh
qsub ./job_script.sh



Scheduling Features: backfill

• Scan lower priority jobs for tasks that can be fit between larger/longer jobs
• Expensive, but can significantly improve utilization
• Most effective when jobs make accurate walltime requests
• The number of jobs to schedule around is configurable (may have a 

significant impact on your scheduling time)
• backfill_depth

May 2017 31



Scheduling Features: Fairshare

• Jobs are prioritized by a configurable per-user (or per-project) importance 
score (potentially hierarchical) 

• Jobs are de-prioritized by historical usage (subject to some half-life)
• Users who are “important” and/or haven’t used much CPU*time recently 

run first
• Prevent any one user from monopolizing the system
• Give those who are more important a little more priority while still 

preventing starvation

May 2017 32



Scheduling Features: Fairshare

• Priority = usage/allocated_percentage_of_system
• Usage is decayed by a configurable factor every configurable unit of time
• Default decay is a 24 hour half-life
• Usage is a configurable expression, often cpu*seconds
• Percentage is based on “shares”

• Configure 10 users with 100 shares each, each user gets 10%
• Shares are in arbitrary units
• Defined in $PBS_HOME/sched_priv/resource_group

• Smaller priority = run sooner

May 2017 33



Scheduling Features: Placement Sets

• Special resources attached to nodes
• Scheduler will try to keep each job in the smallest possible placement set
• Ensure locality – try to keep a job’s assigned nodes within a 

switch/rack/datacenter/etc

May 2017 34



Array Jobs

• An optimized way to run N of the same job
• Each job is passed its index (useful to specialize)
• Potentially faster to schedule than individual jobs
• qsub –J “1-100”

May 2017 35



Job Sort

• Which job should we run next?
• Configurable. Can be based on a user-defined python expression, fairshare, 

or static queue based priority
• Many schedulers allow you to use multiple scaled factors – PBS does not

(yet)
• Secondary factors used only to break ties – if two jobs have exactly equal fairshare

priority, only then will queue priority take effect
• Can turn off fairshare completely

• Can use a site-specific python function, but can’t integrate fairshare score

May 2017 36



Additional Configuration: Health Check

• Verify that a node is healthy right before launch
• Filesystems mounted
• All the RAM present
• CPUs present and at a reasonable frequency/temperature
• Network up
• OS correct
• Daemons running

• If not, requeue the job and mark the node offline

May 2017 37



Additional Configuration: Health Check

• Example hook provided with PBS: $PBS_EXEC/unsupported/ 
NodeHealthCheck.py

• NHC was presented yesterday – can be integrated with PBS via hooks
• Good idea to run something right before and/or right after each job
• Details tend to be site specific – track what your users break and check for 

that

May 2017 38



Additional Configuration: cgroups

• Contain each job to the resources that it requested
• Prevent out-of-memory events or other buggy code from breaking your 

compute nodes
• Newer OS may require integration with systemd instead of cgroups directly
• No direct support in PBS, but can be accomplished with hooks. Altair can 

provide a sample upon request

May 2017 39



Troubleshooting: Why won’t my job run??

• Because you asked for something silly!
• qstat -f jobid
• Check the comments field
• Check that the job needs <= sizeof(cluster) 

• Because too many nodes are broken
• pbsnodes -l

• Because the system is otherwise broken
• Filesystem mounted?
• Network up?

• Because the system is busy
• qstat -a

May 2017 40



Troubleshooting: Why did X’s job run before mine?

• Because you’re unimportant or you’ve been hogging the system (fairshare)
• Because their job was smaller/shorter and was backfilled
• Because your job asked for something that was unavailable

• Consumable resources
• Special nodes
• Placement sets

May 2017 41



Troubleshooting: Fairshare

May 2017 42

Fairshare usage units are in: cput
TREEROOT  : Grp: -1     cgrp: 0    Shares: -1     Usage:14141166288 Perc: 100.000%
facilities: Grp: 0      cgrp: 2    Shares: 100000 Usage: 14141165485 Perc: 99.990%
ASD       : Grp: 2      cgrp: 271  Shares: 5000000 Usage: 5301136879 Perc: 49.995%
A_ASDNCAR : Grp: 271    cgrp: 278  Shares: 5000000 Usage: 881376146 Perc: 24.997%
ACGD0005  : Grp: 278    cgrp: 284  Shares: 1      Usage: 791019631 Perc:  4.166%
ACGD0004  : Grp: 278    cgrp: 283  Shares: 1      Usage: 0      Perc:  4.166%
AACD0002  : Grp: 278    cgrp: 282  Shares: 1      Usage: 1854   Perc:  4.166%
ARAL0001  : Grp: 278    cgrp: 281  Shares: 1      Usage: 785    Perc:  4.166%
AHAO0001  : Grp: 278    cgrp: 280  Shares: 1      Usage: 421    Perc:  4.166%

# pbs_fs



Troubleshooting: No Output

• usecp
• Was submission host alive?

• Check disks - is there space/quota available for output files?
• Is the job done? qstat -f [jobid]

May 2017 43



Troubleshooting: Diagnostic collection

• $PBS_EXEC/unsupported/pbs_diag
• Produces a tarball for PBS support

• tracejob [jobid]
• Finds information about a job from the server log
• Crippled if you’re using syslog (only)

• Increase the log-level (different for each component – see docs) 
• Look for core files in $PBS_HOME
• If the server is hung, ”gstack [pid]” a few times to figure out what it’s doing

May 2017 44



Analytics

• Very limited support in PBS
• PBS Analytics

• Web based reporting using the accounting data produced by PBS
• Commercial product

• XDMoD
• NSF sponsored web-based reporting tool
• Some Limited PBS (and SLURM) support
• Integration with other data sources

• Gold
• Open (PNNL) or Commercial (Adaptive) but no recent releases

May 2017 45



Reservations

• Two kinds: Standing and advanced
• Standing reservations reserve some resources on a regular basis

• ical syntax

• Advanced reservations reserve some resources at a specific future time
• Reservations are queues
• Reservations will disappear if they can not be fulfilled 
• Reservations for offline nodes may be reconfirmed on other nodes up to a 

configurable time before the start

May 2017 46



Reservations

• Nodes that are offlined in a running reservation are not replaced
• Reservation queues are numerical and have a configurable prefix which 

indicates their type:
• R123456
• S123457

• Names can be attached to reservations, but they aren’t really used
• Generally, reservation queues have an ACL that restricts who can submit to 

them

May 2017 47



Reservations

• Common States:
• Running – reservation can run jobs
• Confirmed – resources are allocated, but the reservation hasn’t started yet
• Degraded – reservation is running, but some reserved resource is unavailable
• Unconfirmed – scheduler is still looking for resources 

May 2017 48



Reservations

May 2017 49

# pbs_rsub -l select=1:ncpus=72 -l place=free -R 1300 -E 1400
R311175.laadmin1.ib0.laramie.ucar.edu UNCONFIRMED
# pbs_rstat -f R311175.laadmin1.ib0.laramie.ucar.edu
Resv ID: R311175.laadmin1.ib0.laramie.ucar.edu
Reserve_Name = NULL
Reserve_Owner = pbsdata@laadmin1.ib0.laramie.ucar.edu
reserve_state = RESV_CONFIRMED
reserve_substate = 2
reserve_start = Thu Apr 27 13:00:00 2017
reserve_end = Thu Apr 27 14:00:00 2017
reserve_duration = 3600
queue = R311175
Resource_List.ncpus = 72
Resource_List.walltime = 01:00:00
Resource_List.nodect = 1
Resource_List.select = 1:ncpus=72
Resource_List.place = free
resv_nodes = (r1i0n1:ncpus=72)
Authorized_Users = pbsdata@laadmin1.ib0.laramie.ucar.edu
server = laadmin1.ib0.laramie.ucar.eductime = Thu Apr 27 11:48:43 2017
mtime = Thu Apr 27 11:48:43 2017
Variable_List = 
PBS_O_LOGNAME=pbsdata,PBS_O_HOST=laadmin1.ib0.laramie.ucar.edu,PBS_O_MAIL=/var/spool/m
ail/pbsdata

mailto:pbsdata@laadmin1.ib0.laramie.ucar.edu
mailto:pbsdata@laadmin1.ib0.laramie.ucar.edu


Preemption

• If a more important job comes along, signal an existing job to make room
• Up to each user application to checkpoint (quickly) and terminate (or be kill -

9’ed)
• Not used too much at academic HPC sites

• Not much support from common applications

May 2017 50



Support

• Commercial Support from Altair: 
http://www.pbsworks.com/SupportGT.aspx?d=Support,-Services-and-
Support

• Community support forum on http://pbspro.org/
• PBS User’s Group (This week in Las Vegas ;-( )
• Jira bug tracker: https://pbspro.atlassian.net/secure/Dashboard.jspa

May 2017 51

http://www.pbsworks.com/SupportGT.aspx?d=Support,-Services-and-Support
http://pbspro.org/
https://pbspro.atlassian.net/secure/Dashboard.jspa


Questions?

May 2017 52


	Linux Clusters Institute:�Scheduling with PBSPro
	What does a batch scheduler do?
	PBSPro
	PBSPro: Features
	PBSPro: Basic Components
	Hardware Requirements
	System Software Setup
	Installation
	Installation: pbs.conf
	/etc/pbs.conf
	Other places to look for configuration
	Starting PBS
	PBSPro: Commands
	PBS Objects
	Queues
	Manipulating Queues
	Resources
	Resources
	Adding Custom Resources
	Nodes
	Nodes
	Built-in Node resources
	Manipulating Nodes
	ACLs and Security
	Hooks
	Components of a Job
	Placement
	Select
	Sample Job
	Sample Job - Running
	Scheduling Features: backfill
	Scheduling Features: Fairshare
	Scheduling Features: Fairshare
	Scheduling Features: Placement Sets
	Array Jobs
	Job Sort
	Additional Configuration: Health Check
	Additional Configuration: Health Check
	Additional Configuration: cgroups
	Troubleshooting: Why won’t my job run??
	Troubleshooting: Why did X’s job run before mine?
	Troubleshooting: Fairshare
	Troubleshooting: No Output
	Troubleshooting: Diagnostic collection
	Analytics
	Reservations
	Reservations
	Reservations
	Reservations
	Preemption
	Support
	Questions?

