
Linux Clusters Institute:
Spectrum Scale

J.D. Maloney | Storage Engineer
National Center for Supercomputing Applications (NCSA)

malone12@illinois.edu

Georgia Tech, August 15th – 18th 2017

Spectrum Scale (GPFS) Overview
• Product of IBM, gone through many name changes
• Licensed file system, based on server socket count and client

count
• One of the two “prominent” file systems in used today by the

world’s largest supercomputers
• Generally considered easier to administer due to product

maturity and Enterprise level features
• For most part expects to be run on top of reliable
disks presented through redundant RAID controllers

August 15th-18th 2017 2

Quick History of Spectrum Scale
• Began as the Tiger Shark File System in 1993 to handle

multimedia applications
• Also was influenced by IBM’s Vesta File System which was

in development around the same time for use in different
applications

• Was productized in 1994, and the name changed to IBM
GPFS (General Parallel File System) around 1998

• Gone through many version changes and feature adds and
in 2015 the name was changed to Spectrum Scale

• Though we’re all still getting used to that 

August 15th-18th 2017 3

Quick History of Spectrum Scale

August 15th-18th 2017 4
Image Credit: spectrumscale.org

Stand Out Spectrum Scale Features
• Distributed metadata servers, no real limit to number,

could have it in all of them
• Allows data and metadata to be written inline with each

other the same storage device, no separate devices
needed

• Supports “Super inodes” where files less that ~3.8K
actually fit inside the inode itself

• Very handy when you have metadata pools that run on all flash devices
• Leads to much improved small file performance

August 15th-18th 2017 5

Stand Out Spectrum Scale Features
• Robust Tiering architecture based on storage pools
• Build in Policy Engine that can be used to query the file

system and/or drive data movement
• Run things like automated purges based on parameters
• Move data between storage pools based on certain criteria

• Built in rebalancing of data across NSDs (LUNs)
• Handy when you grow your storage system over time or when you’re

doing big migrations or upgrades

• Filesets for isolating different datasets
• Block Sharding

• Block size can be split /32 to increase disk use

August 15th-18th 2017 6

Spectrum Scale Weaknesses
• License cost that scales with deployment

• Not an open source FS

• Sequential I/O performance doesn’t scale as well
• Progress on this in development for the CORAL program

• Multiple fabric support is less robust
• Requires more robust/enterprise hardware to present

reliable NSDs to servers
• Not true of FPO, but that is not a common HPC deployment type
• Right now locks design into traditional RAID LUNs or GNR (which only

comes from two vendors)

• Client limitation of around 10,000 clients (per IBM)

August 15th-18th 2017 7

Popular Spectrum Scale Appliances

August 15th-18th 2017 8

• Can buy ready built appliances from many vendors, here
are some:

DDNSeagate Lenovo

Spectrum Scale Hardware

August 15th-18th 2017 9

• Many other vendors will sell you hardware pre-configured
for Spectrum Scale file systems

• Find solution that hits your price point and you have
confidence in your vendor to provide a solid product

• Needs to be built off of reliable storage appliance that can
present LUNs through multiple controllers to multiple
hosts

• Can be tested on less robust hardware but not for production

• Some gains can be had from integrated appliances, but
comes with trade off of limited flexibility/customization

Spectrum Scale Concepts

August 15th-18th 2017 10

Key Definitions

August 15th-18th 2017 11

• NSD (Network Shared Disk) – LUN presented to a Spectrum
scale server to be used for the file system(s)

• Cluster Manager – Spectrum Scale server that is elected to
handle disk leases, detects and recovers node failures,
distributes configuration information, etc.

• File System Manager – Spectrum Scale server that
coordinates token management, disk space allocation,
mount/unmount requests, etc. for a file system

• Quorum Node- Spectrum Scale server that helps the
cluster maintain data integrity in case of node failure

• File System – A group of NSDs that are grouped together to
form a mountable device on the client

Scaling Out

August 15th-18th 2017 12

• Since Spectrum Scale servers can each deal with both data
and metadata, scaling comes by just increasing the total
number of NSD servers

• Many file systems can be run out of the same Spectrum
Scale cluster (256 FS limit)

• What servers are cluster and file system managers is
dynamic

• Election held during startup of the mmfs daemon and managers can be
moved around by admins to get them on desired nodes if there is a
preference

• Usually like to have even distribution as much as possible

Cluster vs Scatter

August 15th-18th 2017 13

• Two different block allocation map types
• Parameter is chosen at file system create time, cannot be

changed afterward
• Cluster allocates blocks in chunks (clusters) on NSDs

• Better for clusters with smaller quantities of disks and or clients

• Scatter allocates blocks randomly across NSDs
• Better for clusters with larger quantities of disks or clients

• The default setting is chosen based on the number of
nodes and NSDs present in the cluster at the time of the
create command

• Threshold for switch from cluster to scatter is currently 8 nodes or disks

Spectrum Scale NSD Server

August 15th-18th 2017 14

• Powerful Dual Socket CPU System
• More memory the better, used for page pool

• Lowest you’d want to probably go is 32GB/64GB
• We set our NSD server memory at 384GB currently

• Fast disks for metadata pool if possible
• Great candidate for this is NVME
• Disks now come in U.2 form factor for easier access
• Metadata disks presented individually to Spectrum Scale

• Good network connectivity
• Connectivity type partially depended on how you access your disk (IB SAN,

SAS, Fiber Channel)
• Cluster network type match your compute nodes (IB, OPA, Ethernet)
• Balance the two as much as possible, leave some overhead for other tasks

Spectrum Scale Architecture

August 15th-18th 2017 15

Image Credit: ibm.com

File Sets

August 15th-18th 2017 16

• A way of breaking up a file system into different units that
can all have different properties that all still use the same
underlying NSDs

• Allows an admin to not have to sacrifice performance for the
sake of logical separation

• Enables policy engine scans to run on individual file sets (if
using independent inode spaces)

• Speeds up the policy run

• Parameters that can each file set can have tuned separately:
• Block Size
• Inode Limits
• Quotas

Spectrum Scale Node Classes

August 15th-18th 2017 17

GPFS Node Classes

18

• A node class is simply a user defined logical grouping of
nodes

• You can use a node class with any GPFS command that uses
the ”-N” option to specify a list of nodes

• The systems in a group may perform the same type of
functions

• The systems in a group may have the same characteristics,
such as GPU processors, larger memory, faster CPUs, etc

• You may group servers together that have special GPFS
configuration settings just for them

August 15th-18th 2017

Creating a Node Class

19

mmcrnodeclass

mmcrnodeclass: Missing arguments.

Usage:

mmcrnodeclass ClassName -N {Node[,Node...] | NodeFile | NodeClass}

mmcrnodeclass coreio -N ss-demo1.local,ss-demo2.local

mmcrnodeclass: Propagating the cluster configuration data to all

affected nodes. This is an asynchronous process.

• Can be handy to create a node class for your core
Spectrum Scale servers (ones that host the disk)

• Other potentially handy classes: CES nodes, login
nodes, clients, GridFTP nodes

August 15th-18th 2017

List of Node Classes

20

mmlsnodeclass

Node Class Name Members

--------------------- ---

coreio ss-demo1.local,ss-demo2.local

• Use the “mmlsnodeclass” command to view the
current node classes on the system and what
members are in them

August 15th-18th 2017

Modifying a Node Class

21

mmchnodeclass

mmchnodeclass: Missing arguments.

Usage:

mmchnodeclass ClassName {add | delete | replace}

-N {Node[,Node...] | NodeFile | NodeClass}

add - allows you to add additional nodes the the specified node class.

delete – deletes the specified nodes from the node class.

replace – replaces all nodes in the specified node class with the new list
provided.

• Use “mmchnodeclass” to modify a node list after it’s
created (as more nodes come in, nodes leave, etc.)

August 15th-18th 2017

Removing a Node Class

22

mmdelnodeclass coreio

mmdelnodeclass: Propagating the cluster configuration data to all

affected nodes. This is an asynchronous process.

• Use the “mmdelnodeclass” command to remove a
node class that is no longer necessary

August 15th-18th 2017

Spectrum Scale Tuning

August 15th-18th 2017 23

Tuning Parameters – Where to start

24

• Start with the operating system and the attached disk
systems. Make sure you have the optimal settings for your
environment first before trying to tune Spectrum Scale.

• Run a baseline IOR and mdtest on the file system so you
know what your initial performance numbers look like.

• Only make 1 change at time, running the IOR and mdtest
after each change to verify if what you did hurt or helped
the situation.

August 15th-18th 2017

Tuning Parameters – Where to start

25

• As of Spectrum Scale 4.2.3.2, there are over 700 parameters
within Spectrum Scale

• Take a look at mmdiag --config output

• We are going to just touch on a few of them because
Spectrum Scale has gotten much smarter at its own
configuration

August 15th-18th 2017

Tuning Parameters

26

Page Pool
• Determines the size of the Spectrum Scale file data block cache
• Unlike local file systems that use the operating system page cache to

cache file data, Spectrum Scale allocates its own cache called the
pagepool

• The Spectrum Scale pagepool is used to cache user file data and file
system metadata

• Can be set on a node class basis
• Allocated at the startup of the mmfs daemon

• For large pagepool sizes you may see delay on daemon startup while this gets
allocated (tail log file /var/adm/ras/mmfs.log.latest)

August 15th-18th 2017

27

maxMBpS
• Specifies an estimate of how much performance into or out of a

single node can occur
• Default is 2048MB/s

• Value is used in calculating the amount of I/O that can be done to
effectively pre-fetch data for readers and write‐behind data from
writers

• You can lower this amount to limit I/O demand from a single node on
a cluster

• You can also raise this amount to increase the I/O demand allowed
from a single node

Tuning Parameters

August 15th-18th 2017

28

maxFilesToCache
• Controls how many file descriptors (inodes) each node can cache.

Each file cached requires memory for the inode and a token(lock).
• Tuning Guidelines

• The increased value should be large enough to handle the number of
concurrently open files plus allow caching of recently used files and
metadata operations such as "ls" on large directories.

• Increasing maxFilesToCache can improve the performance of user interactive
operations like running "ls".

• Don't increase the value of maxFilesToCache on all nodes in a large cluster
without ensuring you have sufficient token manager memory to support the
possible number of outstanding tokens.

Tuning Parameters

August 15th-18th 2017

29

maxStatCache
• The maxStatCache parameter sets aside pageable memory to cache

attributes of files that are not currently in the regular file cache
• This can be useful to improve the performance of stat() calls for applications

with a working set that does not fit in the regular file cache
• The memory occupied by the stat cache can be calculated as: maxStatCache

× 176 bytes

• Upcoming versions of Spectrum Scale will support a peer-to-
peer access of this cache to improve performance of the file
system by reducing load on the NSD servers hosting the
metadata

Tuning Parameters

August 15th-18th 2017

30

nsdMaxWorkerThreads
• Sets the maximum number of NSD threads on an NSD server that

will be concurrently transferring data with NSD clients
• The maximum value depends on the sum of worker1Threads +

prefetchThreads + nsdMaxWorkerThreads < 8192 on 64bit architectures
• The default is 64 (in 3.4) 512 (in 3.5) with a minimum of 8 and maximum of

8,192
• In some cases it may help to increase nsdMaxWorkerThreads for large

clusters.
• Scale this with the number of LUNs, not the number of clients. You need this

to manage flow control on the network between the clients and the servers.

Tuning Parameters

August 15th-18th 2017

Spectrum Scale Snapshots

August 15th-18th 2017 31

What Is A Snapshot
• A snapshot can preserver the state of a file system at a given

moment in time
• Snapshots at File System level are known as Global snapshots

• The space a snapshot takes up is the amount of blocks that
would have been deleted or changed since the snapshot was
taken

• Snapshots of a file system are read-only; changes can only be
made to the active (that is, normal, non-snapshot) files and
directories

32August 15th-18th 2017

What Is A Snapshot
• Creates a consistent copy of the file system at a given

moment in time while not interfering with backups or
replications occurring on the file system

• Allows for the easy recovery of a file, while not a backup,
can be used as one in certain scenarios:

• User accidental file deletion
• Recovery of older file state for comparison
• Accidental overwrite of file

33August 15th-18th 2017

Snapshot Types

34

File System Snapshot
• Taken for the entire file system. Again, only the changed blocks are

stored to reduce the snapshot size
File Set Snapshot
• You can also take a snapshot of any independent inode file set

separate from a file system snapshot
• Instead of creating a global snapshot of an entire file system, a fileset

snapshot can be created to preserve the contents of a single
independent fileset plus all dependent filesets that share the same
inode space.

• If an independent fileset has dependent filesets that share its inode space,
then a snapshot of the independent fileset will also include those dependent
filesets. In other words, a fileset snapshot is a snapshot of the whole inode
space.

August 15th-18th 2017

Snapshot Storage

35

• Snapshots are stored in a special read-only directory named
.snapshots by default

• This directory resides in the top level directory of the file
system.

• The directory can be linked into all subdirectories with the
mmsnapdir command

Place a link in all directories:

mmsnapdir fs0 –a

Undo the link above:

mmsnapdir fs0 -r

August 15th-18th 2017

Snapshot Creation(File system)

36

Usage:

mmcrsnapshot Device [[Fileset]:]Snapshot[,[[Fileset]:]Snapshot]...

[-j FilesetName[,FilesetName...]]

For a file system snapshot:

mmcrsnapshot fs0 fs0_20170718_0001

Flushing dirty data for snapshot :fs0_20170718_0001...

Quiescing all file system operations.

Snapshot :fs0_20170718_0001 created with id 1.

#

Use the “mmcrsnapshot” command to run the snapshot

August 15th-18th 2017

Listing Snapshots

37

mmlssnapshot fs0

Snapshots in file system fs0:

Directory SnapId Status Created
Fileset

fs0_20170718_0001 1 Valid Mon Jul 18 11:08:13 2017
#

Use the “mmlssnapshot” command to view all the snapshots
currently stored on a given file system

August 15th-18th 2017

Snapshot Creation(Fileset)

38

mmcrsnapshot fs0 home:fs0_home_20170724_0612 -j home
Flushing dirty data for snapshot home:fs0_home_20170724_0612...
Quiescing all file system operations.
Snapshot home:fs0_home_20170724_0612 created with id 2.
#

Listing the snapshots for fs0 now shows a snapshot of the home fileset.
mmlssnapshot fs0
Snapshots in file system fs0:
Directory SnapId Status Created Fileset
fs0_20170718_0001 1 Valid Mon Jul 24 11:08:13 2017
fs0_home_20170724_0612 2 Valid Mon Jul 24 11:12:20 2017 home
[root@ss-demo1 ~]#

Creating a snapshot of just the home fileset on a file system

August 15th-18th 2017

Snapshot Deletion(Filesystem)

39

mmdelsnapshot
mmdelsnapshot: Missing arguments.
Usage:

mmdelsnapshot Device [[Fileset]:]Snapshot[,[[Fileset]:]Snapshot]...
[-j FilesetName[,FilesetName...]] [--qos QosClass]

[-N {all | mount | Node[,Node...] | NodeFile | NodeClass}]

mmdelsnapshot fs0 fs0_20170718_0001
Invalidating snapshot files in :fs0_20170718_0001...
Deleting files in snapshot :fs0_20170718_0001...
100.00 % complete on Mon Jul 24 11:17:52 2017 (502784 inodes with total

1 MB data processed)
Invalidating snapshot files in :fs0_20170718_0001/F/...
Delete snapshot :fs0_20170718_0001 successful.

Deleting the snapshot taken at the file system level using the
“mmdelsnapshot” command

August 15th-18th 2017

Snapshot Deletion(Fileset)

40

mmdelsnapshot fs0 home:fs0_home_20170724_0612 -j home

Invalidating snapshot files in home:fs0_home_20170724_0612...

Deleting files in snapshot home:fs0_home_20170724_0612...

100.00 % complete on Mon Jul 24 11:25:56 2017 (100096 inodes with total
0 MB data processed)

Invalidating snapshot files in home:fs0_home_20170724_0612/F/...

Delete snapshot home:fs0_home_20170724_0612 successful.

#

mmlssnapshot fs0

No snapshots in file system fs0

Deleting the snapshot taken at the file set level using the
“mmdelsnapshot” command

August 15th-18th 2017

File Level Restore from Snapshot

41

• In order to restore a file, you can traverse the directories in
the .snapshots directory

• The directories have the name given to the snapshot when
the mmcrsnapshot command was executed

• You can search for the file you want to restore and then use
rsync or cp to copy the file wherever you would like, outside
of the .snapshot directory

August 15th-18th 2017

Directory Level Restore from Snapshot

42

• Restoring a directory is the same as restoring a file except
that you must recursively copy things

• At NCSA, we use an in-house, publicly available script called
mmsnaprest to handle the restores of files and directories

• The source can be found at: https://github.com/ckerner/mmsnaprest.git

August 15th-18th 2017

https://github.com/ckerner/mmsnaprest.git

mmsnaprest : Snapshot Restore Utility

43

mmsnaprest -h

GPFS Restore From Snapshot

Please note: This utility uses rsync style processing for directories. If
you are unsure of how that matching works, you may want to play
with it in a test area. There are examples in the EXAMPLES
section of this help screen.

Usage: mmsnaprest [-D|--debug] [-u|--usage] [-v|--verbose] [-h|--help]
[--dry-run] [-ls SOURGE] [-s SOURCE -t TARGET]

Option Description
-ls SOURCE Just list all of the snapshot versions of a file/directory.

-s SOURCE Specify the source file/directory for the restore. You will be
prompted for the version you wish to restore from.

-t TARGET Specify the target location for the restore. If not specified,
you will be prompted for it.

TARGET is unique. If you are restoring a file, you can specify
a directory to restore the file to, keeping its original name.
Or you can restore to a file name, either creating or overwriting
the original file.

--dry-run Generate a log of what would have been done, but don't do it.

-v|--verbose Show the rsync restore output on the terminal as well as logging it.

-D|--debug Turn on debugging. This is very verbose.

-h|--help Print this help screen.

August 15th-18th 2017

snappy: Snapshot Automation

44

• You can automate the creation of snapshots with a shell
script, or even call the mmcrsnapshot command straight
from cron if you like

• At NCSA, we use an in-house tool called snappy
• Same utility for both file system and fileset snapshots
• Written in python
• Utilizes a simple windows ini style configuration file
• Allows for a very customized approach to snapshots:

• Hourly
• Daily
• Weekly
• Monthly
• Quarterly
• Yearly

• Available at: https://github.com/ckerner/snappy.git

August 15th-18th 2017

https://github.com/ckerner/ssapi.git

45

snappy --help

usage: snappy [-h] [--cron] [--hourly] [--daily] [--dow] [--weekly] [--monthly] [--quarterly] [--yearly] [-v] [-d] [-t] [-n]

Spectrum Scale Snapshot Wrapper

optional arguments:

-h, --help show this help message and exit

--cron Generate the crontab entries to run all of the snapshots.

--hourly Generate HOURLY snapshots.

--daily Generate DAILY snapshots.

--dow Generate DAY OF WEEK snapshots.

--weekly Generate WEEKLY snapshots.

--monthly Generate MONTHLY snapshots.

--quarterly Generate QUARTERLY snapshots.

--yearly Generate YEARLY snapshots.

-v, --verbose Toggle Verbose Mode. DEFAULT: False

-d, --debug Toggle Debug Mode. DEFAULT: False

-t, --trace Toggle Debug Mode. DEFAULT: False

-n Do not actually run, but log what would be done. Implies debug option. DEFAULT: False

This requires GPFS to be installed in the default location.

#

snappy: Snapshot Automation

August 15th-18th 2017

Snapshot Configuration File: .snapcfg

46

The configuration file always must reside in the root
top level directory of the file system.

cat .snapcfg
[DEFAULT]
Active=False
SnapType=Fileset
Versions=30
Frequency=daily

[home]
Active=True

[projects]
Active=True
Versions=7

[software]
Active=True
Frequency=weekly
Versions=14

#

From this example, the default is for fileset
snapshots, running daily, keeping 30 versions.
The default action is to NOT take snapshots.
So, if you want a snapshot, you must turn it on
for each fileset individually.

The .snapcfg section name must be the same
as the fileset name. Each section will inherit
the DEFAULT section and then override it with
the local values. Here is the breakdown for
this file:

• [home] get daily snapshots with 30 versions
saved.

• [projects] gets daily snapshots with 7
versions.

• [software] gets a weekly snapshot with 14
versions.

August 15th-18th 2017

Spectrum Scale Cluster Export Services

August 15th-18th 2017 47

CES – Cluster Export Services

48

• Provides highly available file and object services to a Spectrum Scale
cluster such as NFS, SMB, Object, and Block

High availability
• With Spectrum Scale, you can configure a subset of nodes in the

cluster to provide a highly available solution for exporting Spectrum
Scale file systems usings NFS, SMB, Object, and Block.

• Nodes are designated as Cluster Export Services (CES) nodes or protocol
nodes. The set of CES nodes is frequently referred to as the CES cluster.

• A set of IP addresses, the CES address pool, is defined and distributed
among the CES nodes

• If a node enters or exits the CES Cluster, IP Addresses are dynamically
reassigned

• Clients use these floating IP Address to access the CES services

August 15th-18th 2017

CES – Cluster Export Services

49

Monitoring
• CES monitors the state of the protocol services itself

• Checks not just for host availability, but also the health of the services
• If a failure is detected CES will migrate IP Address away from a node and mark it as

offline for CES services

Protocol support
• CES supports the following export protocols: NFS, SMB, object, and iSCSI

(block)
• Protocols can be enabled individually
• If a protocol is enabled, all CES nodes will serve that protocol

• The following are examples of enabling and disabling protocol services by
using the mmces command:

• mmces service enable nfs Enables the NFS protocol in the CES cluster.
• mmces service disable obj Disables the Object protocol in the CES cluster.

August 15th-18th 2017

CES Commands

50

• mmblock - Manages the BLOCK configuration operations
• mmces - Manages the CES address pool and other CES

cluster configuration options
• mmnfs - Manages NFS exports and sets the NFS

configuration attributes
• mmobj - Manages the Object configuration operations
• mmsmb - Manages SMB exports and sets the SMB

configuration attributes
• mmuserauth - Configures the authentication methods that

are used by the protocols

August 15th-18th 2017

Spectrum Scale Policy Engine

August 15th-18th 2017 51

Policy Engine

52

• The GPFS policy engine allows you to run SQL-like queries
against the file system and get reports based on those
queries

• The policy engine can also be used to invoke actions, such as
compression, file movement, etc

• Customized scripts can also be invoked, letting you have full
control over anything that is being done

• There are many parameters that can be specified. For a list
of them, check out the Spectrum Scale Administration and
Programming Reference

August 15th-18th 2017

Example Policy Run

53

• Here is a simple sample policy that will just list all of the files
in /fs0/projects along with the file’s allocation, its actual size,
owner and fileset name. It also displays the inode number
and fully qualified path name.

cat rules.txt
RULE 'listall' list 'all-files'
SHOW(varchar(kb_allocated) || ' ' || varchar(file_size) || ' ' ||
varchar(user_id) || ' ' || fileset_name)
WHERE PATH_NAME LIKE '/fs0/projects/%'

August 15th-18th 2017

54

Sample output from a policy run:

mmapplypolicy fs0 -f /fs0/tmp/ -P rules.txt -I defer
[I] GPFS Current Data Pool Utilization in KB and %
Pool_Name KB_Occupied KB_Total Percent_Occupied
archive 131072 41934848 0.312561047%
data 192512 41934848 0.459074038%
system 0 0 0.000000000% (no user
data)
[I] 4422 of 502784 inodes used: 0.879503%.
[W] Attention: In RULE 'listall' LIST name 'all-files' appears but there is no
corresponding "EXTERNAL LIST 'all-files' EXEC ... OPTS ..." rule to specify a
program to process the matching files.
[I] Loaded policy rules from rules.txt.
Evaluating policy rules with CURRENT_TIMESTAMP = 2017-07-25@15:34:38 UTC
Parsed 1 policy rules.
RULE 'listall' list 'all-files'
SHOW(varchar(kb_allocated) || ' ' || varchar(file_size) || ' ' ||
varchar(user_id) || ' ' || fileset_name)
WHERE PATH_NAME LIKE '/fs0/projects/%'
[I] 2017-07-25@15:34:39.041 Directory entries scanned: 385.
[I] Directories scan: 362 files, 23 directories, 0 other objects, 0 'skipped' files
and/or errors.
[I] 2017-07-25@15:34:39.043 Sorting 385 file list records.
[I] Inodes scan: 362 files, 23 directories, 0 other objects, 0 'skipped' files
and/or errors.

Example Policy Run

August 15th-18th 2017

55

Sample output from a policy run (continued):

[I] 2017-07-25@15:34:40.954 Policy evaluation. 385 files scanned.
[I] 2017-07-25@15:34:40.956 Sorting 360 candidate file list records.
[I] 2017-07-25@15:34:41.024 Choosing candidate files. 360 records scanned.
[I] Summary of Rule Applicability and File Choices:
Rule# Hit_Cnt KB_Hit Chosen KB_Chosen KB_Ill

Rule
0 360 61184 360 61184 0

RULE 'listall' LIST 'all-files' SHOW(.) WHERE(.)

[I] Filesystem objects with no applicable rules: 25.

[I] GPFS Policy Decisions and File Choice Totals:
Chose to list 61184KB: 360 of 360 candidates;

Predicted Data Pool Utilization in KB and %:
Pool_Name KB_Occupied KB_Total Percent_Occupied
archive 131072 41934848 0.312561047%
data 192512 41934848 0.459074038%
system 0 0 0.000000000% (no user
data)
[I] 2017-07-25@15:34:41.027 Policy execution. 0 files dispatched.
[I] A total of 0 files have been migrated, deleted or processed by an EXTERNAL
EXEC/script;

0 'skipped' files and/or errors.
#

Example Policy Run

August 15th-18th 2017

56

Sample output from a policy run:

]# wc -l /fs0/tmp/list.all-files
360 /fs0/tmp/list.all-files

head -n 10 /fs0/tmp/list.all-files
402432 374745509 0 3584 1741146 0 projects -- /fs0/projects/dar-2.4.1.tar.gz
402434 229033036 0 0 1217 1000 projects -- /fs0/projects/dar-2.4.1/README
402435 825781038 0 256 43668 1000 projects -- /fs0/projects/dar-2.4.1/config.guess
402436 1733958940 0 256 18343 1000 projects -- /fs0/projects/dar-2.4.1/config.rpath
402437 37654404 0 0 371 1000 projects -- /fs0/projects/dar-2.4.1/INSTALL
402438 1471382967 0 0 435 1000 projects -- /fs0/projects/dar-2.4.1/TODO
402440 398210967 0 0 376 1000 projects -- /fs0/projects/dar-2.4.1/misc/batch_cygwin
402441 292549403 0 0 738 1000 projects -- /fs0/projects/dar-2.4.1/misc/README
402442 1788675584 0 256 3996 1000 projects -- /fs0/projects/dar-2.4.1/misc/dar_ea.rpm.proto
402443 637382920 0 256 4025 1000 projects -- /fs0/projects/dar-2.4.1/misc/dar64_ea.rpm.proto
#

Example Policy Run

August 15th-18th 2017

Spectrum Scale Storage Pools & File Placement

August 15th-18th 2017 57

Storage Pools

58

• Physically, a storage pool is a collection of disks or RAID
arrays

• Allow you to group multiple storage systems within a file system.

• Using storage pools, you can create tiers of storage by
grouping storage devices based on performance, locality, or
reliability characteristics

• One pool could be an All Flash Array (AFA) with high-performance SSDs
• Another pool might consist of numerous disk controllers that host a large set

of economical SAS/SATA drives

August 15th-18th 2017

Example Storage Pool Configuration

59

Block Size
• A system pool with a 1M block size for metadata
• A data pool with a block size that best meets the storage

requirements of the users
Hardware
• System pool backed by NVME flash
• Data pool backed by SATA/SAS based storage appliance (DDN,

NetApp, etc)

August 15th-18th 2017

Information Lifecycle Management in Spectrum Scale

60

• Spectrum Scale includes the ILM toolkit that allows you to
manage your data via the built in policy engine

• No matter the directory structure, Spectrum Scale can
automatically manage what storage pools host the data, and
for how long

• Throughout the life of the data Spectrum scale can track and migrate data
from your policy driven rules

• You can match the data and its needs to hardware, allowing
for cost savings

• Great method for spanning infrastructure investments
• New hardware is for more important/more used data
• Older hardware becomes the slower storage pool

August 15th-18th 2017

61

• There are three types of storage pools in Spectrum Scale:
• A required system pool that you create
• Optional user storage pools that you create
• Optional external storage pools that you define with policy rules and

manage through an external application (eg. Spectrum Protect/Tivoli)
• Create filesets to provide a way to partition the file system

namespace to allow administrative operations to work at a
narrower level than the entire file system

• Create policy rules based on data attributes to determine
the initial file placement and manage data placement
throughout the life of the file

Information Lifecycle Management in Spectrum Scale

August 15th-18th 2017

Tiered Storage

62

• Tiered storage is the assignment of different categories of
data to various storage media to reduce the total storage
cost and/or meet certain business requirements

• Tiers are determined by performance and business criteria,
cost of the media

• Data is ranked and stored based on performance and/or user
requirements

August 15th-18th 2017

Tiered Storage – What does it look like?

63

• Your Spectrum Scale cluster can have differing types of storage media
connected by differing technologies as well, including but not limited
to:

• NVME – Non-Volatile Memory Express
• SSD -- Solid State Disk
• SAS attached disk (NetApp, Dell, etc)
• Fiber attached disk
• Infiniband attached disk(DDN, etc)
• Self-Encrypting drives
• High Speed SCSI drives
• You may have differing drives sizes: 2T, 4T, 8T, 10T, etc
• SMR – Shingled Magnetic Recording drives
• And the list goes on and on

August 15th-18th 2017

Tiered Storage – How do I use it?

64

• Lets say you have the following devices on your system:
• /dev/nvme01 /dev/nvme02
• /dev/sas01 /dev/sas02
• /dev/smr01 /dev/smr02

• There are many different ways that you can configure a Spectrum
Scale file system. To make it interesting, lets have the following
business rules that we need to satisfy:

• Very fast file creates and lookups, including a mirrored copy.
• A decent storage area for data files
• An additional area for files over a week old that are not going to be updated,

just read consistently
• What would this configuration look like?

August 15th-18th 2017

Tiered Storage: Configuration Example

65

%pool:

pool=data

blockSize=4M

usage=dataOnly

layoutMap=scatter

%nsd:

nsd=sas01

usage=dataOnly

pool=data

%nsd:

nsd=sas02

usage=dataOnly

pool=data

%pool:

pool=archive

blockSize=4M

usage=dataOnly

layoutMap=scatter

%nsd:

nsd=smr01

usage=dataOnly

pool=archive

%nsd:

nsd=smr02

usage=dataOnly

pool=archive

%nsd:

nsd=nvme01

usage=metadataOnly

pool=system

%nsd:

nsd=nvme02

usage=metadataOnly

pool=system

August 15th-18th 2017

File Placement Policies

66

• If you are utilizing multiple storage pools within Spectrum
Scale, you must specify a default storage policy at a
minimum.

• File placement policies are used to control what data is
written to which storage pool.

• A default policy rule can be quite simple. For example, if you
have a ’data’ pool and want to write all files there, create a
file called policy with a single line containing the following
rule:

cat policy

rule 'default' set pool 'data'

August 15th-18th 2017

Installing File Placement Policies

67

Usage: mmchpolicy Device PolicyFilename

[-t DescriptiveName] [-I {yes|test}]

Test the policy before installing it is good practice!
mmchpolicy fs0 policy -I test
Validated policy 'policy': Parsed 1 policy rules.

No errors on the policy, so lets install it:
mmchpolicy fs0 policy
Validated policy 'policy': Parsed 1 policy rules.
Policy `policy' installed and broadcast to all nodes.

August 15th-18th 2017

Viewing Installed Policies

68

Usage: mmlspolicy Device

List the file placement policies:

mmlspolicy fs0

Policy for file system '/dev/fs0':

Installed by root@ss-demo1.os.ncsa.edu on Fri Jul 21 06:26:10 2017.

First line of policy 'policy' is:

rule 'default' set pool 'data'

#

August 15th-18th 2017

Viewing Storage Pool Information

69

mmlspool fs0

Storage pools in file system at '/fs0':

Name Id BlkSize Data Meta Total Data in (KB) Free Data in (KB) Total Meta in (KB) Free Meta in (KB)

system 0 1024 KB no yes 0 0 (0%) 20963328 16295936 (78%)

data 65537 4 MB yes no 41934848 41795584 (100%) 0 0 (0%)

archive 65538 4 MB yes no 41934848 41803776 (100%) 0 0 (0%)

#

• You can monitor the usage of a pool with the mmlspool
command

• Will show how much space is allocated and used within each storage pool of a
file system

August 15th-18th 2017

Spectrum Scale Monitoring

August 15th-18th 2017 70

Monitoring with mmpmon

71

• Built in tool to report counters that each of the mmfs
daemons keep

• Can output results in either machine parseable or human
readable formats

• Some of the statistics it monitors on a per host basis:
• Bytes Read
• Bytes Written
• File Open Requests
• File Close Requests
• Per NSD Read/Write

• The machine parseable output is easy to use for scripted
data gathering

August 15th-18th 2017

Monitoring with mmpmon

72August 15th-18th 2017

Sample output from mmpmon (human readable)

Monitoring with mmpmon

73

Can be used to make useful graphs

August 15th-18th 2017

Sample output from mmpmon (machine parseable)

http://set-analytics.ncsa.illinois.edu:3000/dashboard/db/roger-mmpmon?refresh=1m&orgId=1

Other Spectrum Scale Monitoring

74August 15th-18th 2017

• Using the built in ZiMon sensors with mmperfmon
• Spectrum Scale GUI now has the ability to have performance

monitoring with graphs
• Spectrum Scale Grafana Bridge

• Python standalone application that puts Spectrum Scale performance data
into openTSDB which Grafana can understand

• Data that is pushed “across” the bridge is gathered by the ZiMon Monitoring
Tool

Resources
• https://www.ibm.com/support/knowledgecenter/en/STXK

QY_4.2.0/ibmspectrumscale42_content.html
• http://www.spectrumscale.org/join/

August 15th-18th 2017 75

Acknowledgements

August 15th-18th 2017 76

• Members of the SET group at NCSA for slide creation and review
• Members of the steering committee for slide review

Questions

August 15th-18th 2017 77

	Linux Clusters Institute:�Spectrum Scale
	Spectrum Scale (GPFS) Overview
	Quick History of Spectrum Scale
	Quick History of Spectrum Scale
	Stand Out Spectrum Scale Features
	Stand Out Spectrum Scale Features
	Spectrum Scale Weaknesses
	Popular Spectrum Scale Appliances
	Spectrum Scale Hardware
	Spectrum Scale Concepts
	Key Definitions
	Scaling Out
	Cluster vs Scatter
	Spectrum Scale NSD Server
	Spectrum Scale Architecture
	File Sets
	Spectrum Scale Node Classes
	GPFS Node Classes
	Creating a Node Class
	List of Node Classes
	Modifying a Node Class
	Removing a Node Class
	Spectrum Scale Tuning
	Tuning Parameters – Where to start
	Tuning Parameters – Where to start
	Tuning Parameters
	Tuning Parameters
	Tuning Parameters
	Tuning Parameters
	Tuning Parameters
	Spectrum Scale Snapshots
	What Is A Snapshot
	What Is A Snapshot
	Snapshot Types
	Snapshot Storage
	Snapshot Creation(File system)
	Listing Snapshots
	Snapshot Creation(Fileset)
	Snapshot Deletion(Filesystem)
	Snapshot Deletion(Fileset)
	File Level Restore from Snapshot
	Directory Level Restore from Snapshot
	mmsnaprest : Snapshot Restore Utility
	snappy: Snapshot Automation
	snappy: Snapshot Automation
	Snapshot Configuration File: .snapcfg
	Spectrum Scale Cluster Export Services
	CES – Cluster Export Services
	CES – Cluster Export Services
	CES Commands
	Spectrum Scale Policy Engine
	Policy Engine
	Example Policy Run
	Example Policy Run
	Example Policy Run
	Example Policy Run
	Spectrum Scale Storage Pools & File Placement
	Storage Pools
	Example Storage Pool Configuration
	Information Lifecycle Management in Spectrum Scale
	Slide Number 61
	Tiered Storage
	Tiered Storage – What does it look like?
	Tiered Storage – How do I use it?
	Tiered Storage: Configuration Example
	File Placement Policies
	Installing File Placement Policies
	Viewing Installed Policies
	Viewing Storage Pool Information
	Spectrum Scale Monitoring
	Monitoring with mmpmon
	Monitoring with mmpmon
	Monitoring with mmpmon
	Other Spectrum Scale Monitoring
	Resources
	Acknowledgements
	Questions

