Linux Clusters Institute:
Block vs Object Storage

Georgia Tech, August 15th – 18th 2017

J.D. Maloney | Storage Engineer
National Center for Supercomputing Applications (NCSA)
malone12@illinois.edu
What Are We Trying To Solve
Data Growth

The Cambrian Explosion...of Data

Exabytes (billions of GB)

- Structured Data
- Unstructured Data

Image Credit: http://www.eetimes.com
Structured Data

• Vast majority of data does **not** fall in this category
• Data that lives in a format that can be parsed or queried
 • Relational Databases
 • Sensor metric data
 • Tables and spreadsheets
• Machines can understand it, and analyze it
• More understandable to people as data can be coalesced into meaning that helps make decisions
 • This data easily turned into charts or tables
 • What is put in research findings to represent the output of the work
Unstructured Data

• Vast majority of data does fall in this category
• Data that can’t be queried easily to get out relevant on needed information
• Big examples
 • Images
 • Video
 • Text Files
 • Sound files
• Can come out of things with image sensors, microphones, or other data capture instruments
• Emails, social media posts, human generated text
Research Data Growth

• How does this resonate with the data that we deal with in HPC?
 • Unstructured data sounds a lot like the data scientists gather to process on our machines

• Almost all areas of science dive into these types of datasets when doing their work
 • Studying human interaction/trends via social media
 • Imaging the galaxy or things on the earth
 • It’s a by-product of us capturing the world around us
Research Data Growth

• How have handled this data in the past?
 • Throwing data into directories of course
 • Organize by date/sensor/location etc.
 • File trees are easy for people to see and navigate to find things

• What’s going on now?
 • Datasets are getting bigger (more quantity, more size)
 • Resolution increases have led to rapidly growing file sizes
 • Lower cost of data gathering tools leads to vast increase in data

• Why did the user just try and create directory with 25 million files?
 • How this can manifest itself on in computing workloads
Object Storage
What It Is

• What we’d call files now -- now called objects, dropped into a bucket
• Just like you pour grains of sand into a bucket, that’s how objects are treated in object storage systems
• A great way to store unstructured data at large scales
• Much more flexible answer than POSIX file based solutions that are commonly deployed today
How It Works

• Each object is given a unique ID that can be used to retrieve the object from the system when it is needed by the user or application

• Data is stored in one flat level, no concept of hierarchy between different files

• Objects have metadata and attributes about them stored along with the object
 • Metadata defined by the system
 • Attributes are user supplied

• Access is done via GETs and PUTs
How It Works

Metadata:
- creation date/time; ownership, size...

Attributes – inferred:
- access patterns, content, indexes...

Attributes – user supplied:
- retention, QoS...

Image Credit: http://storagegaga.com
How It Works

• Object storage systems can contain many different buckets for different user’s data as well as different data sets

• Buckets can have quotas applied to them like normal file systems can to ensure fair use of system

• Attributes can support things like tagging that allows easier sorting and aggregating of objects
What It Solves

• The super deep directory problem

• Managing large amounts of unstructured data easily without the burden of POSIX
 • Directory locking is no longer an issue for highly concurrent file access to data in the same dataset
 • The CRUSH map in Ceph and the rings in Swift reduce metadata bottleneck seen on traditional file systems

• Ease of portability between different systems
 • Absolute file paths are no longer important
 • Object ID’s hold the key to everything and don’t change once the object is put into the system
What It Solves

• The scaling limitations we’re starting to see with POSIX and the constraints it has

• Many in the industry see object based storage as key to making a successful jump to Exascale Computing
 • Large vendors are developing file systems that are object based, designed to be ready for the next wave of large machines
 • Intel has DAOS (Distributed Application Object Storage)
 • Seagate in their A200 appliance
The Challenges

Not a perfect system, there’s a reason we all still have traditional file systems

• Hard for humans to visualize and understand
 • No one wants to try and fish through a bucket with millions of objects by hand, practically impossible
 • Object IDs have no bearing on the content of the file, unlike a file name in a directory
 • Change for many years of historic use, needs to overcome the precedent that has been around

• New tools need to be developed to view and manage data
 • Lots of tools rely and file paths to retrieve data, easy to rewrite but takes the effort
 • View tools to understand the different attribute and metadata tags
The Challenges

Application Support

• Biggest Challenge facing object use

• High adoption in web-like areas, and great for bulk archival of data but traditional HPC workloads are a long ways off from native use

• Adopting legacy code to handle new file access is not always an easy task and requires programmer time and money to fund it

• Characteristics of object storage don’t provide the same performance that traditional file systems do
The Challenges

Application Support (cont)

• Parallel access to the same object is not a concept which is how some big HPC applications
 • Would require fundamental overhauls to how code is written

• Many applications in all areas, but including HPC rely on a stack of dependencies which all need to able to handle the new backend
Difference Between Block & Object
To Put It Simply

Image Credit: http://druva.com
Like But Not Same

• Neither Block or Object is the same as traditional file storage, but they can sometimes get confused with each other

• Both are heavily used in cloud based deployments
 • Usually object storage holds user data, files users use on the system
 • Block storage holds virtual machines
 • Openstack for example has Swift for Object and Cinder for Block

• Neither are the same as traditional file storage
Block Storage
What It Is

• A block is a very raw unit of storage, a file can span many different blocks, or just take up one
• Blocks don’t store any metadata, just data
• Blocks each have an address that is used to reference and retrieve them for use
• All blocks are the same size as each other, they aren’t dependent on what they store
How It Works

• Chunks of data are served to hosts for their use
• The block presented to the host can be adjusted in size to appear as a volume of whatever the desired size is
• Host machine (physical or virtual) that receives the block storage then formats the block storage to whatever it desires (commonly EXT4, XFS, ZFS, etc.)
• Fabric connecting systems can be something like Fiber Channel, but often now done over Ethernet to machines
 • For example how Openstack uses block storage for volumes
How It Works

Image Credit: http://arstechnica.com
What It Solves

• Allows a large centrally managed storage system to serve capacity to many hosts

• Reduces the burden and overhead of management of disks, instead of having a bunch of isolated storage pools local to the hosts

• Enables very efficient use of storage capacity in the organization
 • Don’t have to decide the amount of storage needed in machine on purchase
 • Not limited to what the machine can physically hold
 • Disk can be added and provisioned when needed
What It Solves

• Easy snapshot ability versus traditional file storage
 • Only the part of the file that changes needs to be updated with the changes

• Performance upgrades either disk or network can boost performance for all systems that are leveraging the service

• Disk that looks local is used by a lot of applications and something people are used to
The Challenges

• Ties availability of disk to many machines (physical or virtual) to one central system
 • Outage of the main system causes loss of capacity for many machines
 • All eggs in the same basket principle

• Fabric contention for the SAN and/or the block storage servers can be an issue where as local disk is bound to the system it serves

• Network performance and latency can become a bottleneck even with expensive disk is used

• By itself, doesn’t manage data, just provides the capacity to store the data
Acknowledgements

• Thanks to Sam Linston from University of Utah for help with slide development content
• Members of the SET group at NCSA for slide review
• Members of the steering committee for slide review
Questions